EconPapers    
Economics at your fingertips  
 

Local Lyapunov exponents for dissipative continuous systems

Florian Grond and Hans H. Diebner

Chaos, Solitons & Fractals, 2005, vol. 23, issue 5, 1809-1817

Abstract: We analyze a recently proposed algorithm for computing Lyapunov exponents focusing on its capability to calculate reliable local values for chaotic attractors. The averaging process of local contributions to the global measure becomes interpretable, i.e. they are related to the local topological structure in phase space. We compare the algorithm with the commonly used Wolf algorithm by means of analyzing correlations between coordinates of the chaotic attractor and local values of the Lyapunov exponents. The correlations for the new algorithm turn out to be significantly stronger than those for the Wolf algorithm. Since the usage of scalar measures to capture complex structures can be questioned we discuss these entities along with a more phenomenological description of scatter plots.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790400445X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:23:y:2005:i:5:p:1809-1817

DOI: 10.1016/j.chaos.2004.07.020

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1809-1817