Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity
Jui-Sheng Lin,
Jun-Juh Yan and
Teh-Lu Liao
Chaos, Solitons & Fractals, 2005, vol. 24, issue 1, 371-381
Abstract:
This paper is concerned with the state reconstruction of nonlinear chaotic systems with uncertainty having unknown bounds. An adaptive output feedback sliding mode observer (AOFSMO) is established from the available output measurement. Unlike most works we further consider the presence of input nonlinearity due to physical limitations and no restrictive assumption is imposed on the system. Thus, the range of applicability of the proposed method becomes broad. Finally, a hyperchaotic Rössler system is used as an illustrative example to demonstrate the effectiveness of the proposed AOFSMO design method.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904006162
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:24:y:2005:i:1:p:371-381
DOI: 10.1016/j.chaos.2004.09.042
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().