EconPapers    
Economics at your fingertips  
 

Bifurcations of traveling wave solutions for two coupled variant Boussinesq equations in shallow water waves

Zhengdi Zhang, Qinsheng Bi and Jianping Wen

Chaos, Solitons & Fractals, 2005, vol. 24, issue 2, 631-643

Abstract: The bifurcations of traveling wave solutions for two coupled variant Boussinesq equations introduced as a model for water waves are studied in this paper. Transition boundaries have been presented to divide the parameter space into different regions associated with qualitatively different types of solutions. The conditions for the existence of solitary wave solutions and uncountably infinite, smooth, non-smooth and periodic wave solutions are obtained. The explicit exact traveling wave solutions are presented by using an algebraic method.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904005673
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:24:y:2005:i:2:p:631-643

DOI: 10.1016/j.chaos.2004.09.023

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:24:y:2005:i:2:p:631-643