EconPapers    
Economics at your fingertips  
 

On the study of limit cycles of a cubic polynomials system under Z4-equivariant quintic perturbation

Yuhai Wu, Maoan Han and Xuanliang Liu

Chaos, Solitons & Fractals, 2005, vol. 24, issue 4, 999-1012

Abstract: This paper is concerned with the number and distribution of limit cycles of a perturbed cubic Hamiltonian system which has 5 centers and 4 saddle points. The singular point and singular close orbits’ stability theory and perturbation skills of differential equations are applied to study the Hopf, homoclinic loop and heteroclinic loop bifurcation of such system under Z4-equivariant quintic perturbation. It is found that the perturbed system has at least 16 limit cycles bifurcated from the focus. Further, at least 14 limit cycles with three different distributions appear in the heteroclinic loops bifurcation.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904005910
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:24:y:2005:i:4:p:999-1012

DOI: 10.1016/j.chaos.2004.09.079

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:24:y:2005:i:4:p:999-1012