EconPapers    
Economics at your fingertips  
 

Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation

Mingliang Wang and Xiangzheng Li

Chaos, Solitons & Fractals, 2005, vol. 24, issue 5, 1257-1268

Abstract: We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the new Hamiltonian amplitude equation introduced by Wadati et al. When the modulus m approaches to 1 and 0, then the hyperbolic function solutions (including the solitary wave solutions) and trigonometric function solutions are also given respectively. As the parameter ε goes to zero, the new Hamiltonian amplitude equation becomes the well-known nonlinear Schrödinger equation (NLS), and at least there are 37 kinds of solutions of NLS can be derived from the solutions of the new Hamiltonian amplitude equation.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904006186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:24:y:2005:i:5:p:1257-1268

DOI: 10.1016/j.chaos.2004.09.044

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:24:y:2005:i:5:p:1257-1268