Dynamic analysis, controlling chaos and chaotification of a SMIB power system
Hsien-Keng Chen,
Tsung-Nan Lin and
Juhn-Horng Chen
Chaos, Solitons & Fractals, 2005, vol. 24, issue 5, 1307-1315
Abstract:
The dynamic behaviors of a SMIB power system are studied in this paper. A single modal equation is used to analyze the qualitative behaviors of the system. The famous equation of motion is called “swing equation”. The Lyapunov direct method is applied to obtain conditions of stability of the equilibrium points of the system. The bifurcation of the parameter dependent system is studied numerically. Besides, the phase portraits, the Poincaré maps, and the Lyapunov exponents are presented to observe periodic and chaotic motions. Further, the addition of periodic force and the feedback control are used to control chaos effectively. Finally, the chaotification problem of the SMIB power system is also issued.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790400623X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:24:y:2005:i:5:p:1307-1315
DOI: 10.1016/j.chaos.2004.09.081
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().