Singularity structure analysis of inhomogeneous Hirota and higher order nonlinear Schrödinger equations
A. Mahalingam and
T. Alagesan
Chaos, Solitons & Fractals, 2005, vol. 25, issue 2, 319-323
Abstract:
We present the Painlevé analysis of inhomogeneous Hirota and higher order nonlinear Schrödinger equations. Through this analysis, it is found that these equations are integrable only under a certain condition for their inhomogeneous parameters, which suggests that they may admit solitary wave solutions.
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904007155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:25:y:2005:i:2:p:319-323
DOI: 10.1016/j.chaos.2004.11.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().