Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity
Jun-Juh Yan,
Kuo-Kai Shyu and
Jui-Sheng Lin
Chaos, Solitons & Fractals, 2005, vol. 25, issue 2, 347-355
Abstract:
This paper addresses a practical tracking problem for a class of uncertain chaotic systems with dead-zone nonlinearity in the input function. Based on the Lyapunov stability theorem and Barbalat lemma, an adaptive variable structure controller (AVSC) is proposed to ensure the occurrence of the sliding mode even though the control input contains a dead-zone. Also it is worthy of note that the proposed AVSC involves no information of the upper bound of uncertainty. Thus, the limitation of knowing the bound of uncertainty in advance is certainly released. Furthermore, in the sliding mode, the investigated uncertain chaotic system remains insensitive to the uncertainty, and behaves like a linear system. Finally, a well-known Duffing–Holmes chaotic system is used to demonstrate the feasibility of the proposed AVSC.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077904007246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:25:y:2005:i:2:p:347-355
DOI: 10.1016/j.chaos.2004.11.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().