An LMI criterion for linear-state-feedback based chaos synchronization of a class of chaotic systems
Guo-Ping Jiang and
Wei Xing Zheng
Chaos, Solitons & Fractals, 2005, vol. 26, issue 2, 437-443
Abstract:
Based on the Lyapunov stability theory in control theory, a new sufficient condition is proposed in this paper for chaos synchronization by the linear-state-feedback approach for a class of chaotic systems. By using Schur theorem and some matrix techniques, this criterion is then transformed into the Linear Matrix Inequality (LMI) form, which can be easily verified and resolved using the MATLAB LMI Toolbox. It is shown that under the proposed criterion chaos synchronization can be achieved at an exponential convergence rate. The effectiveness of the criterion proposed herein is verified and demonstrated by the chaotic Murali–Lakshmanan–Chua system.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905000846
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:2:p:437-443
DOI: 10.1016/j.chaos.2005.01.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().