EconPapers    
Economics at your fingertips  
 

Robust exponential stability and domains of attraction in a class of interval neural networks

Xiaofan Yang, Xiaofeng Liao, Sen Bai and David J Evans

Chaos, Solitons & Fractals, 2005, vol. 26, issue 2, 445-451

Abstract: This paper addresses robust exponential stability as well as domains of attraction in a class of interval neural networks. A sufficient condition for an equilibrium point to be exponentially stable is established. And an estimate on the domains of attraction of exponentially stable equilibrium points is presented. Both the condition and the estimate are formulated in terms of the parameter intervals, the neurons’ activation functions and the equilibrium point. Hence, they are easily checkable. In addition, our results neither depend on monotonicity of the activation functions nor on coupling conditions between the neurons. Consequently, these results are of practical importance in evaluating the performance of interval associative memory networks.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905000858
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:2:p:445-451

DOI: 10.1016/j.chaos.2004.12.041

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:445-451