EconPapers    
Economics at your fingertips  
 

The multi-component TA hierarchy and its multi-component integrable couplings system with six arbitrary functions

Tiecheng Xia and Fucai You

Chaos, Solitons & Fractals, 2005, vol. 26, issue 2, 605-613

Abstract: A new simple 3M dimensional loop algebra X˜ is produced, whose commutation operation defined by us as simple and straightforward as that in the loop algebra A˜1. It follows that a general scheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X˜, a new isospectral problem is established, and then by making use of the Tu scheme the well-known multi-component TA hierarchy is obtained. Finally, an expanding loop algebra F˜M of the loop algebra X˜ is presented, based on the F˜M, the multi-component integrable couplings system of the multi-component TA hierarchy with six arbitrary functions are worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach in this paper.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905001207
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:2:p:605-613

DOI: 10.1016/j.chaos.2005.01.024

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:605-613