EconPapers    
Economics at your fingertips  
 

Viewing sets of mutually unbiased bases as arcs in finite projective planes

Metod Saniga and Michel Planat

Chaos, Solitons & Fractals, 2005, vol. 26, issue 5, 1267-1270

Abstract: This note is a short conceptual elaboration of the conjecture of Saniga et al. [J. Opt. B: Quantum Semiclass 6 (2004) L19–L20] by regarding a set of mutually unbiased bases (MUBs) in a d-dimensional Hilbert space as an analogue of an arc in a (finite) projective plane of order d. Complete sets of MUBs thus correspond to (d+1)-arcs, i.e., ovals. In the Desarguesian case, the existence of two principally distinct kinds of ovals for d=2n and n⩾3, viz. conics and non-conics, implies the existence of two qualitatively different groups of the complete sets of MUBs for the Hilbert spaces of corresponding dimensions. A principally new class of complete sets of MUBs are those having their analogues in ovals in non-Desarguesian projective planes; the lowest dimension when this happens is d=9.

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905002717
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:5:p:1267-1270

DOI: 10.1016/j.chaos.2005.03.008

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1267-1270