EconPapers    
Economics at your fingertips  
 

New stability conditions for neural networks with constant and variable delays

Qiang Zhang, Xiaopeng Wei and Jin Xu

Chaos, Solitons & Fractals, 2005, vol. 26, issue 5, 1391-1398

Abstract: In this paper, by utilizing Lyapunov functional method, we analyze global asymptotic stability of neural networks with constant delays. A new sufficient condition ensuring global asymptotic stability of the unique equilibrium point of delayed neural networks is obtained. Furthermore, based on the method of delay differential inequality, the conditions checking global exponential stability of the equilibrium point of neural networks with variable delays are given. The results extend and improve the earlier publications.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905002961
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:5:p:1391-1398

DOI: 10.1016/j.chaos.2005.04.008

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1391-1398