Complexiton solutions of the Korteweg–de Vries equation with self-consistent sources
Wen-Xiu Ma
Chaos, Solitons & Fractals, 2005, vol. 26, issue 5, 1453-1458
Abstract:
Complexiton solutions to the Korteweg–de Vires equation with self-consistent sources are presented. The basic technique adopted is the Darboux transformation. The resulting solutions provide evidence that soliton equations with self-consistent sources can have complexiton solutions, in addition to soliton, positon and negaton solutions. This also implies that soliton equations with self-consistent sources possess some kind of analytical characteristics that linear differential equations possess and brings ideas toward classification of exact explicit solutions of nonlinear integrable differential equations.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003085
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:5:p:1453-1458
DOI: 10.1016/j.chaos.2005.03.030
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().