EconPapers    
Economics at your fingertips  
 

Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay

Fenghua Tu and Xiaofeng Liao

Chaos, Solitons & Fractals, 2005, vol. 26, issue 5, 1499-1505

Abstract: We study the problem of estimating the exponential convergence rate and exponential stability for neural networks with time-varying delay. Some criteria for exponential stability are derived by using the linear matrix inequality (LMI) approach. They are less conservative than the existing ones. Some analytical methods are employed to investigate the bounds on the interconnection matrix and activation functions so that the systems are exponentially stable.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:26:y:2005:i:5:p:1499-1505

DOI: 10.1016/j.chaos.2005.04.014

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1499-1505