Effect of random noise on chaotic motion of a particle in a ϕ6 potential
Zhongkui Sun,
Wei Xu and
Xiaoli Yang
Chaos, Solitons & Fractals, 2006, vol. 27, issue 1, 127-138
Abstract:
The chaotic behaviors of a particle in a triple well ϕ6 potential possessing both homoclinic and heteroclinic orbits under harmonic and Gaussian white noise excitations are discussed in detail. Following Melnikov theory, conditions for the existence of transverse intersection on the surface of homoclinic or heteroclinic orbits for triple potential well case are derived, which are complemented by the numerical simulations from which we show the bifurcation surfaces and the fractality of the basins of attraction. The results reveal that the threshold amplitude of harmonic excitation for onset of chaos will move downwards as the noise intensity increases, which is further verified by the top Lyapunov exponents of the original system. Thus the larger the noise intensity results in the more possible chaotic domain in parameter space. The effect of noise on Poincare maps is also investigated.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905002006
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:1:p:127-138
DOI: 10.1016/j.chaos.2005.02.033
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().