EconPapers    
Economics at your fingertips  
 

Effect of random noise on chaotic motion of a particle in a ϕ6 potential

Zhongkui Sun, Wei Xu and Xiaoli Yang

Chaos, Solitons & Fractals, 2006, vol. 27, issue 1, 127-138

Abstract: The chaotic behaviors of a particle in a triple well ϕ6 potential possessing both homoclinic and heteroclinic orbits under harmonic and Gaussian white noise excitations are discussed in detail. Following Melnikov theory, conditions for the existence of transverse intersection on the surface of homoclinic or heteroclinic orbits for triple potential well case are derived, which are complemented by the numerical simulations from which we show the bifurcation surfaces and the fractality of the basins of attraction. The results reveal that the threshold amplitude of harmonic excitation for onset of chaos will move downwards as the noise intensity increases, which is further verified by the top Lyapunov exponents of the original system. Thus the larger the noise intensity results in the more possible chaotic domain in parameter space. The effect of noise on Poincare maps is also investigated.

Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905002006
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:1:p:127-138

DOI: 10.1016/j.chaos.2005.02.033

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:127-138