Complex dynamics in Chen’s system
Yu Chang and
Guanrong Chen
Chaos, Solitons & Fractals, 2006, vol. 27, issue 1, 75-86
Abstract:
This paper characterizes some complex dynamics of Chen’s system. Some conditions of existence for pitchfork bifurcation and Hopf bifurcation are derived by using bifurcation theory and the center manifold theorem. Numerical simulation results not only show consistence with the theoretical analysis but also display some new and interesting dynamical behaviors including homoclinic bifurcation and the coexistence of two stable limit cycles and one chaotic attractor as well as some periodic solutions emerging from Hopf bifurcation but ending in homoclinic bifurcation, which are different from those reported in the literature before. All these show that Chen’s system has very rich nonlinear dynamics.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905000457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:1:p:75-86
DOI: 10.1016/j.chaos.2004.12.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().