Glider-based computing in reaction-diffusion hexagonal cellular automata
Andrew Adamatzky,
Andrew Wuensche and
Benjamin De Lacy Costello
Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 287-295
Abstract:
A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space–time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003541
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:287-295
DOI: 10.1016/j.chaos.2005.03.048
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().