EconPapers    
Economics at your fingertips  
 

Optimal synchronization of Rössler system with complete uncertain parameters

Awad El-Gohary

Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 345-355

Abstract: The paper discusses the optimal control for the chaos synchronization of Rössler systems with complete uncertain parameters during finite and infinite time intervals. Based on the Liapunov–Bellman technique, optimal control laws are derived from the conditions that ensure asymptotic stability of the error dynamical system and minimizes the cost transfer of this system from arbitrary state to its equilibrium state. The derived control laws make the states of two identical Rössler systems asymptotically synchronized. Some special cases are introduced. Important numerical simulation is included to show the effectiveness of the optimal synchronization technique.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003474
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:345-355

DOI: 10.1016/j.chaos.2005.03.043

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:345-355