EconPapers    
Economics at your fingertips  
 

Chaos, solitons and fractals in hidden symmetry models

Attilio Maccari

Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 363-376

Abstract: A spontaneous symmetry breaking (or hidden symmetry) model is reduced to a system nonlinear evolution equations integrable via an appropriate change of variables, by means of the asymptotic perturbation (AP) method, based on spatio-temporal rescaling and Fourier expansion. It is demonstrated the existence of coherent solutions as well as chaotic and fractal patterns, due to the possibility of selecting appropriately some arbitrary functions. Dromion, lump, breather, instanton and ring soliton solutions are derived and the interaction between these coherent solutions are completely elastic, because they pass through each other and preserve their shapes and velocities, the only change being a phase shift. Finally, one can construct lower dimensional chaotic patterns such as chaotic–chaotic patterns, periodic–chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003449
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:363-376

DOI: 10.1016/j.chaos.2005.04.031

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:363-376