Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons
Jianwei Shen,
Wei Xu and
Wei Li
Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 413-425
Abstract:
Degasperis and Procesi applied the method of asymptotic integrability and obtain Degasperis–Procesi equation. They showed that it has peakon solutions, which has a discontinuous first derivative at the wave peak, but they did not explain the reason that the peakon solution arises. In this paper, we study these non-smooth solutions of the generalized Degasperis–Procesi equation ut−utxx+(b+1)uux=buxuxx+uuxxx, show the reason that the non-smooth travelling wave arise and investigate global dynamical behavior and obtain the parameter condition under which peakon, compacton and another travelling wave solutions engender. Under some parameter condition, this equation has infinitely many compacton solutions. Finally, we give some explicit expression of peakon and compacton solutions.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003292
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:413-425
DOI: 10.1016/j.chaos.2005.04.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().