EconPapers    
Economics at your fingertips  
 

Bifurcation and complexity of Monod type predator–prey system in a pulsed chemostat

Fengyan Wang, Shuwen Zhang, Lansun Chen and Lihua Sun

Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 447-458

Abstract: In this paper, we introduce and study a model of a predator–prey system with Monod type functional response under periodic pulsed chemostat conditions, which contains with predator, prey, and periodically pulsed substrate. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the impulsive system shows two kinds of bifurcations, whose are period-doubling and period-halfing.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003346
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:447-458

DOI: 10.1016/j.chaos.2005.04.025

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:447-458