Exact solutions to the double Sine-Gordon equation
Mingliang Wang and
Xiangzheng Li
Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 477-486
Abstract:
The double Sine-Gordon equation (DSG) with arbitrary constant coefficients is studied by F-expansion method, which can be thought of as an over-all generalization of the Jacobi elliptic function expansion since F here stands for every one of the Jacobi elliptic functions (even other functions). We first derive three kinds of the generic solutions of the DSG as well as the generic solutions of the Sine-Gordon equation (SG), then in terms of Appendix A, many exact periodic wave solutions, solitary wave solutions and trigonometric function solutions of the DSG are separated from its generic solutions. The corresponding results of the SG, which is a special case of the DSG, can also be obtained.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:477-486
DOI: 10.1016/j.chaos.2005.04.027
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().