EconPapers    
Economics at your fingertips  
 

Synchronization of two low-dimensional Kerr chains

P. Szlachetka, K. Grygiel and M. Misiak

Chaos, Solitons & Fractals, 2006, vol. 27, issue 3, 673-684

Abstract: Synchronization of two chaotic low-dimensional chains (α1,α2,α3) and (A1,A2,A3) consisting of Kerr oscillators is studied. The synchronization has been achieved by the parallel coupling of α1 with A1, α2 with A2 and α3 with A3. We want to find whether and when the pairs (α1,A1), (α2,A2) and (α3,A3) synchronize non-simultaneously (three-time synchronism). The problem of synchronization is also studied for a number of couplings between the chains lower than the number of oscillators in a single chain. Both the ring and linear geometry of synchronization is investigated. The presented results suggest a possibility of multi-time synchronism in two coupled high-dimensional chains. It seems very promising for design of some devices for advanced signal processing.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790500411X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:3:p:673-684

DOI: 10.1016/j.chaos.2005.04.091

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:673-684