EconPapers    
Economics at your fingertips  
 

Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation

Li-Qun Chen and Xiao-Dong Yang

Chaos, Solitons & Fractals, 2006, vol. 27, issue 3, 748-757

Abstract: This paper investigates bifurcation and chaos in transverse motion of axially accelerating viscoelastic beams. The Kelvin model is used to describe the viscoelastic property of the beam material, and the Lagrangian strain is used to account for geometric nonlinearity due to small but finite stretching of the beam. The transverse motion is governed by a nonlinear partial-differential equation. The Galerkin method is applied to truncate the partial-differential equation into a set of ordinary differential equations. When the Galerkin truncation is based on the eigenfunctions of a linear non-translating beam subjected to the same boundary constraints, a computation technique is proposed by regrouping nonlinear terms. The scheme can be easily implemented in practical computations. When the transport speed is assumed to be a constant mean speed with small harmonic variations, the Poincaré map is numerically calculated based on 4-term Galerkin truncation to identify dynamical behaviors. The bifurcation diagrams are present for varying one of the following parameter: the axial speed fluctuation amplitude, the mean axial speed and the beam viscosity coefficient, while other parameters are unchanged.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790500367X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:3:p:748-757

DOI: 10.1016/j.chaos.2005.04.045

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:748-757