EconPapers    
Economics at your fingertips  
 

Effect of bounded noise on the chaotic motion of a Duffing Van der pol oscillator in a ϕ6 potential

Xiaoli Yang, Wei Xu and Zhongkui Sun

Chaos, Solitons & Fractals, 2006, vol. 27, issue 3, 778-788

Abstract: This paper investigates the chaotic behavior of an extended Duffing Van der pol oscillator in a ϕ6 potential under additive harmonic and bounded noise excitations for a specific parameter choice. From Melnikov theorem, we obtain the conditions for the existence of homoclinic or heteroclinic bifurcation in the case of the ϕ6 potential is bounded, which are complemented by the numerical simulations from which we illustrate the bifurcation surfaces and the fractality of the basins of attraction. The results show that the threshold amplitude of bounded noise for onset of chaos will move upwards as the noise intensity increases, which is further validated by the top Lyapunov exponents of the original system. Thus the larger the noise intensity results in the less possible chaotic domain in parameter space. The effect of bounded noise on Poincare maps is also investigated.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790500370X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:3:p:778-788

DOI: 10.1016/j.chaos.2005.04.048

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:778-788