Relation among nonlinear evolution equations and their reductions
Jinbing Chen and
Xianguo Geng
Chaos, Solitons & Fractals, 2006, vol. 27, issue 3, 813-821
Abstract:
The LCZ soliton hierarchy is presented, and their generalized Hamiltonian structures are deduced. From the compatibility of soliton equations, it is shown that this soliton hierarchy is closely related to the Burger equation, the mKP equation and a new (2+1)-dimensional nonlinear evolution equation (NEE). Resorting to the nonlinearization of Lax pairs (NLP), all the resulting NEEs are reduced into integrable Hamiltonian systems of ordinary differential equations (ODEs). As a concrete application, the solutions for NEEs can be derived via solving the corresponding ODEs.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003760
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:3:p:813-821
DOI: 10.1016/j.chaos.2005.04.054
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().