Jacobian elliptic function method for nonlinear differential-difference equations
Chaoqing Dai and
Jiefang Zhang
Chaos, Solitons & Fractals, 2006, vol. 27, issue 4, 1042-1047
Abstract:
An algorithm is devised to derive exact travelling wave solutions of differential-difference equations by means of Jacobian elliptic function. For illustration, we apply this method to solve the discrete nonlinear Schrödinger equation, the discretized mKdV lattice equation and the Hybrid lattice equation. Some explicit and exact travelling wave solutions such as Jacobian doubly periodic solutions, kink-type solitary wave solutions are constructed.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905004054
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:4:p:1042-1047
DOI: 10.1016/j.chaos.2005.04.071
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().