EconPapers    
Economics at your fingertips  
 

A study on stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point with the moment method

Guang-Jun Zhang and Jian-Xue Xu

Chaos, Solitons & Fractals, 2006, vol. 27, issue 4, 1056-1066

Abstract: This paper analyzes the stochastic resonance induced by a novel transition of one-dimensional bistable system in the neighborhood of bifurcation point with the method of moment, which refer to the transition of system motion among a potential well of stable fixed point before bifurcation of original system and double-well potential of two coexisting stable fixed points after original system bifurcation at the presence of internal noise. The results show: the semi-analytical result of stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point may be obtained, and the semi-analytical result is in accord with the one of Monte Carlo simulation qualitatively, the occurrence of stochastic resonance is related to the bifurcation of noisy nonlinear dynamical system moment equations, which induce the transfer of energy of ensemble average (Ex) of system response in each frequency component and make the energy of ensemble average of system response concentrate on the frequency of input signal, stochastic resonance occurs.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790500408X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:4:p:1056-1066

DOI: 10.1016/j.chaos.2005.04.074

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:4:p:1056-1066