Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method
Ling Hong and
Jian-Qiao Sun
Chaos, Solitons & Fractals, 2006, vol. 27, issue 4, 895-904
Abstract:
In this paper, bifurcations in dynamical systems with fuzzy uncertainties are studied by means of the fuzzy generalized cell mapping (FGCM) method. A bifurcation parameter is modeled as a fuzzy set with a triangular membership function. We first study a boundary crisis resulting from a collision of a fuzzy chaotic attractor with a fuzzy saddle on the basin boundary. The fuzzy chaotic attractor together with its basin of attraction is eradicated as the fuzzy control parameter reaches a critical point. We also show that a saddle-node bifurcation is caused by the collision of a fuzzy period-one attractor with a fuzzy saddle on the basin boundary. The fuzzy attractor together with its basin of attraction suddenly disappears as the fuzzy parameter passes through a critical value.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905005138
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:4:p:895-904
DOI: 10.1016/j.chaos.2005.04.118
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().