Crisis of interspike intervals in Hodgkin–Huxley model
Wu-yin Jin,
Jian-xue Xu,
Ying Wu,
Ling Hong and
Yao-bing Wei
Chaos, Solitons & Fractals, 2006, vol. 27, issue 4, 952-958
Abstract:
The bifurcations of the chaotic attractor in a Hodgkin–Huxley (H–H) model under stimulation of periodic signal is presented in this work, where the frequency of signal is taken as the controlling parameter. The chaotic behavior is realized over a wide range of frequency and is visualized by using interspike intervals (ISIs). Many kinds of abrupt undergoing changes of the ISIs are observed in different frequency regions, such as boundary crisis, interior crisis and merging crisis displaying alternately along with the changes of external signal frequency. And there are logistic-like bifurcation behaviors, e.g., periodic windows and fractal structures in ISIs dynamics. The saddle-node bifurcations resulting in collapses of chaos to period-6 orbit in dynamics of ISIs are identified.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003930
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:4:p:952-958
DOI: 10.1016/j.chaos.2005.04.062
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().