A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation
Yu-Jie Ren and
Hong-Qing Zhang
Chaos, Solitons & Fractals, 2006, vol. 27, issue 4, 959-979
Abstract:
In the present paper, a generalized F-expansion method is proposed by further studying the famous extended F-expansion method and using a generalized transformation to seek more types of solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose (2+1)-dimensional Nizhnik–Novikov–Veselov equations to illustrate the validity and advantages of the method. As a result, abundant new exact solutions are obtained including Jacobi Elliptic Function solutions, soliton-like solutions, trigonometric function solution etc. The method can be also applied to other nonlinear partial differential equations.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003942
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:4:p:959-979
DOI: 10.1016/j.chaos.2005.04.063
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().