EconPapers    
Economics at your fingertips  
 

A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation

Yu-Jie Ren and Hong-Qing Zhang

Chaos, Solitons & Fractals, 2006, vol. 27, issue 4, 959-979

Abstract: In the present paper, a generalized F-expansion method is proposed by further studying the famous extended F-expansion method and using a generalized transformation to seek more types of solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose (2+1)-dimensional Nizhnik–Novikov–Veselov equations to illustrate the validity and advantages of the method. As a result, abundant new exact solutions are obtained including Jacobi Elliptic Function solutions, soliton-like solutions, trigonometric function solution etc. The method can be also applied to other nonlinear partial differential equations.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905003942
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:4:p:959-979

DOI: 10.1016/j.chaos.2005.04.063

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:4:p:959-979