On a family of models of cell division cycle
d’Onofrio, Alberto
Chaos, Solitons & Fractals, 2006, vol. 27, issue 5, 1205-1212
Abstract:
The aim of this work is to generalize and study a model of cell division cycle proposed recently by Zheng et al. [Zheng Z, Zhou T, Zhang S. Dynamical behavior in the modeling of cell division cycle. Chaos, Solitons & Fractals 2000;11:2371–8]. Here we study the qualitative properties of a general family to which the above model belongs. The global asymptotic stability (GAS) of the unique equilibrium point E (idest of the arrest of cell cycling) is investigated and some conditions are given. Hopf’s bifurcation is showed to happen. In the second part of the work, the theorems given in the first part are used to analyze the GAS of E and improved conditions are given. Theorem on uniqueness of limit cycle in Lienard’s systems are used to show that, for some combination of parameters, the model has GAS limit cycles.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905004315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:5:p:1205-1212
DOI: 10.1016/j.chaos.2005.04.088
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().