Oscillators in resonance p:q:r
M. Arribas,
A. Elipe,
L. Floría and
A. Riaguas
Chaos, Solitons & Fractals, 2006, vol. 27, issue 5, 1220-1228
Abstract:
A canonical transformation is proposed to handle Hamiltonian systems made of the addition or subtraction of three harmonic oscillators in p:q:r resonance. This transformation is an extension of the classical Lissajous transformation for the 1:1 resonance. Our extended Lissajous variables consist of three pairs of action-angle variables, which makes possible the application of perturbation theories without encountering small divisors. A set of functions, related with the Lissajous variables, are found, and are used to describe the phase flow of reduced space after normalization.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905004352
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:5:p:1220-1228
DOI: 10.1016/j.chaos.2005.04.085
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().