EconPapers    
Economics at your fingertips  
 

Convergence of trajectories in fractal interpolation of stochastic processes

Robert Małysz

Chaos, Solitons & Fractals, 2006, vol. 27, issue 5, 1328-1338

Abstract: The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, Małysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873–88. [11]], [Małysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415–28. [15]], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171–8. [10]].

Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905004698
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:5:p:1328-1338

DOI: 10.1016/j.chaos.2005.05.009

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:27:y:2006:i:5:p:1328-1338