Hyperchaos–chaos–hyperchaos transition in modified Rössler systems
Svetoslav Nikolov and
Sébastien Clodong
Chaos, Solitons & Fractals, 2006, vol. 28, issue 1, 252-263
Abstract:
We consider in this paper a family of modified hyperchaotic Rössler systems and investigate both problems of understanding hyperchaos–chaos–hyperchaos transition and computing the prediction time. These systems were obtained and numerically investigated by Nikolov and Clodong [Nikolov S, Clodong S. Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems. Chaos, Solitons & Fractals 2004;22:407–31]. Our studies confirm that transition hyperchaos–chaos–hyperchaos (i) depends on the change of the sign of the corresponding characteristic equation roots or (ii) can be obtained as a result of the absorption/repulsion of the repeller originally located out of the attractor by the growing attractor. It is also shown that the prediction time is a more reliable predictor of the evolution than the information dimension. We conclude that the prediction time in hyperchaotic regimes is at least one order of magnitude smaller than those in chaotic zones.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905005345
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:1:p:252-263
DOI: 10.1016/j.chaos.2005.05.031
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().