Inequivalent topologies of chaos in simple equations
Christophe Letellier,
Elise Roulin and
Otto E. Rössler
Chaos, Solitons & Fractals, 2006, vol. 28, issue 2, 337-360
Abstract:
In the 1970, one of us introduced a few simple sets of ordinary differential equations as examples showing different types of chaos. Most of them are now more or less forgotten with the exception of the so-called Rössler system published in [Rössler OE. An equation for continuous chaos. Phys Lett A 1976;57(5):397–8]. In the present paper, we review most of the original systems and classify them using the tools of modern topological analysis, that is, using the templates and the bounding tori recently introduced by Tsankov and Gilmore in [Tsankov TD, Gilmore R. Strange attractors are classified by bounding tori. Phys Rev Lett 2003;91(13):134104]. Thus, examples of inequivalent topologies of chaotic attractors are provided in modern spirit.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905005400
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:2:p:337-360
DOI: 10.1016/j.chaos.2005.05.036
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().