EconPapers    
Economics at your fingertips  
 

Inequivalent topologies of chaos in simple equations

Christophe Letellier, Elise Roulin and Otto E. Rössler

Chaos, Solitons & Fractals, 2006, vol. 28, issue 2, 337-360

Abstract: In the 1970, one of us introduced a few simple sets of ordinary differential equations as examples showing different types of chaos. Most of them are now more or less forgotten with the exception of the so-called Rössler system published in [Rössler OE. An equation for continuous chaos. Phys Lett A 1976;57(5):397–8]. In the present paper, we review most of the original systems and classify them using the tools of modern topological analysis, that is, using the templates and the bounding tori recently introduced by Tsankov and Gilmore in [Tsankov TD, Gilmore R. Strange attractors are classified by bounding tori. Phys Rev Lett 2003;91(13):134104]. Thus, examples of inequivalent topologies of chaotic attractors are provided in modern spirit.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905005400
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:2:p:337-360

DOI: 10.1016/j.chaos.2005.05.036

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:28:y:2006:i:2:p:337-360