EconPapers    
Economics at your fingertips  
 

Stability and bifurcation of a discrete red blood cell survival model

Chunrui Zhang, Yuangang Zu and Baodong Zheng

Chaos, Solitons & Fractals, 2006, vol. 28, issue 2, 386-394

Abstract: A kind of a discrete red blood cell survival model obtained by Euler method is investigated. Firstly, the linear stability of the model is studied. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived by using the normal form method and center manifold theorem. Finally, computer simulations are performed to illustrate the analytical results found.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905005461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:2:p:386-394

DOI: 10.1016/j.chaos.2005.05.042

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:28:y:2006:i:2:p:386-394