Traveling wavetrains in the complex cubic–quintic Ginzburg–Landau equation
Stefan C. Mancas and
S. Roy Choudhury
Chaos, Solitons & Fractals, 2006, vol. 28, issue 3, 834-843
Abstract:
In this paper, we use a traveling wave reduction or a so-called spatial approximation to comprehensively investigate the periodic solutions of the complex cubic–quintic Ginzburg–Landau equation. The primary tools used here are Hopf bifurcation theory and perturbation theory. Explicit results are obtained for the post-bifurcation periodic orbits and their stability. Generalized and degenerate Hopf bifurcations are also briefly considered to track the emergence of global structures such as homoclinic orbits.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905006351
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:3:p:834-843
DOI: 10.1016/j.chaos.2005.08.080
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().