Accuracy of the Adomian decomposition method applied to the Lorenz system
I. Hashim,
M.S.M. Noorani,
R. Ahmad,
S.A. Bakar,
E.S. Ismail and
A.M. Zakaria
Chaos, Solitons & Fractals, 2006, vol. 28, issue 5, 1149-1158
Abstract:
In this paper, the Adomian decomposition method (ADM) is applied to the famous Lorenz system. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the fourth-order Runge–Kutta (RK4) numerical solutions are made for various time steps. In particular we look at the accuracy of the ADM as the Lorenz system changes from a non-chaotic system to a chaotic one.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905007599
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:5:p:1149-1158
DOI: 10.1016/j.chaos.2005.08.135
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().