Determination of periodic orbits of nonlinear oscillators by means of piecewise-linearization methods
J.I. Ramos
Chaos, Solitons & Fractals, 2006, vol. 28, issue 5, 1306-1313
Abstract:
An approximate method based on piecewise linearization is developed for the determination of periodic orbits of nonlinear oscillators. The method is based on Taylor series expansions, provides piecewise analytical solutions in three-point intervals which are continuous everywhere and explicit three-point difference equations which are P-stable and have an infinite interval of periodicity. It is shown that the method presented here reduces to the well-known Störmer technique, is second-order accurate, and yields, upon applying Taylor series expansion and a Padé approximation, another P-stable technique whenever the Jacobian is different from zero. The method is generalized for single degree-of-freedom problems that contain the velocity, and (approximate) analytical solutions are presented. Finally, by introducing the inverse of a vector and the vector product and quotient, and using Taylor series expansions and a Padé approximation, the method has been generalized to multiple degree-of-freedom problems and results in explicit three-point finite difference equations which only involve vector multiplications.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905006168
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:28:y:2006:i:5:p:1306-1313
DOI: 10.1016/j.chaos.2005.08.203
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().