EconPapers    
Economics at your fingertips  
 

Intelligent analysis of chaos roughness in regularity of walk for a two legged robot

Burak H. Kaygisiz, Ismet Erkmen and Aydan M. Erkmen

Chaos, Solitons & Fractals, 2006, vol. 29, issue 1, 148-161

Abstract: We describe in this paper a new approach to the identification of the chaotic boundaries of regular (periodic and quasiperiodic) regions in nonlinear systems, using cell mapping equipped with measures of fractal dimension and rough sets. The proposed fractal-rough set approach considers a state space divided into cells where cell trajectories are determined using cell to cell mapping technique. All image cells in the state space, equipped with their individual fractal dimension are then classified as being members of lower approximation, upper approximation or boundary region of regular regions with the help of rough set theory. The rough set with fractal dimension as its attribute is used to model the uncertainty of the regular regions, treated as sets of cells in this paper. This uncertainty is then smoothed by a reinforcement learning algorithm in order to enrich regular regions that are used for control. Our approach is applied to the walking control of a two legged robot, which fails very frequently due to chaotic behavior.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905006417
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:29:y:2006:i:1:p:148-161

DOI: 10.1016/j.chaos.2005.08.047

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:29:y:2006:i:1:p:148-161