A Liouville integrable hierarchy, symmetry constraint, new finite-dimensional integrable systems, involutive solution and expanding integrable models
Ye-peng Sun and
Deng-yuan Chen
Chaos, Solitons & Fractals, 2006, vol. 29, issue 4, 978-987
Abstract:
A new spectral problem and the associated integrable hierarchy of nonlinear evolution equations are presented in this paper. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy. Moreover, the corresponding Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, new finite-dimensional completely integrable Hamiltonian systems in the Liouville sense. Further, an involutive representation of solution of each equation in the hierarchy is given. Finally, expanding integrable models of the hierarchy are constructed by using a new Loop algebra.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905007010
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:29:y:2006:i:4:p:978-987
DOI: 10.1016/j.chaos.2005.08.142
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().