Extinction and permanence of a two-prey two-predator system with impulsive on the predator
Zhongyi Xiang and
Xinyu Song
Chaos, Solitons & Fractals, 2006, vol. 29, issue 5, 1121-1136
Abstract:
In this paper, the dynamic behaviors of a two-prey two-predator system with impulsive effect on the predator of fixed moment are investigated. By applying the Floquet theory of liner periodic impulsive equation, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we prove that the system is permanent if the impulsive period is large than some critical value, and meanwhile the conditions for the extinction of one of the two prey and permanence of the remaining three species are given. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790500723X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:29:y:2006:i:5:p:1121-1136
DOI: 10.1016/j.chaos.2005.08.076
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().