The dynamics of a Beddington-type system with impulsive control strategy
Zhenqing Li,
Weiming Wang and
Hailing Wang
Chaos, Solitons & Fractals, 2006, vol. 29, issue 5, 1229-1239
Abstract:
In this paper, by using the theories and methods of ecology and ordinary differential equation, a prey–predator system with Beddington-type functional response and impulsive control strategy is established. Conditions for the system to be extinct are given by using the theories of impulsive equation and small amplitude perturbation skills. It is proved that the system is permanent via the method of comparison involving multiple Liapunov functions. Furthermore, by using the method of numerical simulation, the influence of the impulsive control strategy on the inherent oscillation are investigated, which shows rich dynamics, such as period doubling bifurcation, crises, symmetry-breaking pitchfork bifurcations, chaotic bands, quasi-periodic oscillation, narrow periodic window, wide periodic window, period-halving bifurcation, etc. That will be useful for study of the dynamic complexity of ecosystems.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905007605
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:29:y:2006:i:5:p:1229-1239
DOI: 10.1016/j.chaos.2005.08.195
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().