On modeling and visualizing single-electron spin motion
Ciann-Dong Yang
Chaos, Solitons & Fractals, 2006, vol. 30, issue 1, 41-50
Abstract:
In this paper quantum Hamilton–Jacobi theory are exploited to model and visualize single-electron spin motion at zero-point energy state. Quantum Hamilton equations of motion are derived and solved analytically for an electron moving in a constant magnetic field. The resulting electron’s trajectories explain explicitly why the electron has quantized spin and orbital angular momenta and why the electron has an intrinsic spin ℏ/2 with a g factor of 2. This quantum spin model, unlike the usual one expressed by the abstract spin matrices, is fully based on the measurable motion trajectory of electron and may hopefully provide us a succinct guideline to visualize single-electron spin motion in laboratory.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077906001342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:30:y:2006:i:1:p:41-50
DOI: 10.1016/j.chaos.2006.01.116
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().