Rigorous theory of stochastic resonance in overdamped bistable oscillators for weak signals
P. Landa,
V. Ushakov and
Jürgen Kurths
Chaos, Solitons & Fractals, 2006, vol. 30, issue 3, 574-578
Abstract:
The results of the theoretical consideration of stochastic resonance in overdamped bistable oscillators are given. These results are founded not on the model of two states as in [McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A 1989;39:4854–69], but on splitting of motion into regular and random and the rigorous solution of the Fokker–Planck equation for the random component. We show that this resonance is caused by a change, under the influence of noise, of the system’s effective stiffness and damping factor contained in the equation for the regular component. For a certain value of the noise intensity the effective stiffness is minimal, and this fact causes non-monotonic change of the output signal amplitude as the noise intensity changes. It is important that the location of the minimum and its value depend essentially on the signal frequency.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905007630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:30:y:2006:i:3:p:574-578
DOI: 10.1016/j.chaos.2005.08.116
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().