Robust stability analysis of generalized neural networks with discrete and distributed time delays
Zidong Wang,
Huisheng Shu,
Yurong Liu,
Daniel W.C. Ho and
Xiaohui Liu
Chaos, Solitons & Fractals, 2006, vol. 30, issue 4, 886-896
Abstract:
This paper is concerned with the problem of robust global stability analysis for generalized neural networks (GNNs) with both discrete and distributed delays. The parameter uncertainties are assumed to be time-invariant and bounded, and belong to given compact sets. The existence of the equilibrium point is first proved under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, by employing a Lyapunov–Krasovskii functional, the addressed stability analysis problem is converted into a convex optimization problem, and a linear matrix inequality (LMI) approach is utilized to establish the sufficient conditions for the globally robust stability for the GNNs, with and without parameter uncertainties. These conditions can be readily checked by utilizing the Matlab LMI toolbox. A numerical example is provided to demonstrate the usefulness of the proposed global stability condition.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905007988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:30:y:2006:i:4:p:886-896
DOI: 10.1016/j.chaos.2005.08.166
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().