EconPapers    
Economics at your fingertips  
 

Stochastic resonance with different periodic forces in overdamped two coupled anharmonic oscillators

V.M. Gandhimathi, K. Murali and S. Rajasekar

Chaos, Solitons & Fractals, 2006, vol. 30, issue 5, 1034-1047

Abstract: We study the stochastic resonance phenomenon in the overdamped two coupled anharmonic oscillators with Gaussian noise and driven by different external periodic forces. We consider (i) sine, (ii) square, (iii) symmetric saw-tooth, (iv) asymmetric saw-tooth, (v) modulus of sine and (vi) rectified sinusoidal forces. The external periodic forces and Gaussian noise term are added to one of the two state variables of the system. The effect of each force is studied separately. In the absence of noise term, when the amplitude f of the applied periodic force is varied cross-well motion is realized above a critical value (fc) of f. This is found for all the forces except the modulus of sine and rectified sinusoidal forces. For fixed values of angular frequency ω of the periodic forces, fc is minimum for square wave and maximum for asymmetric saw-tooth wave. fc is found to scale as Ae0.75ω+B where A and B are constants. Stochastic resonance is observed in the presence of noise and periodic forces. The effect of different forces is compared. The stochastic resonance behaviour is quantized using power spectrum, signal-to-noise ratio, mean residence time and distribution of normalized residence times. The logarithmic plot of mean residence time τMR against 1/(D−Dc) where D is the intensity of the noise and Dc is the value of D at which cross-well motion is initiated shows a sharp knee-like structure for all the forces. Signal-to-noise ratio is found to be maximum at the noise intensity D=Dmax at which mean residence time is half of the period of the driving force for the forces such as sine, square, symmetric saw-tooth and asymmetric saw-tooth waves. With modulus of sine wave and rectified sine wave, the SNR peaks at a value of D for which sum of τMR in two wells of the potential of the system is half of the period of the driving force. For the chosen values of f and ω, signal-to-noise ratio is found to be maximum for square wave while it is minimum for modulus of sine and rectified sinusoidal waves. The values of Dc at which cross-well behaviour is initiated and Dmax are found to depend on the shape of the periodic forces.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905008842
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:30:y:2006:i:5:p:1034-1047

DOI: 10.1016/j.chaos.2005.09.046

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:30:y:2006:i:5:p:1034-1047