EconPapers    
Economics at your fingertips  
 

Synchronizing different chaotic systems using active sliding mode control

Mohammad Haeri and Amir Abbas Emadzadeh

Chaos, Solitons & Fractals, 2007, vol. 31, issue 1, 119-129

Abstract: An active sliding mode controller is designed to synchronize three pairs of different chaotic systems (Lorenz–Chen, Chen–Lü, and Lü–Lorenz) in drive–response structure. It is assumed that the system parameters are known. The closed loop error dynamics depend on the linear part of the response systems and parameters of the controller. Therefore, the synchronization rate can be adjusted through these parameters. Analysis of the stability for the proposed method is derived based on the Lyapunov stability theorem. Finally, numerical results are presented to show the effectiveness of the proposed control technique.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905008891
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:31:y:2007:i:1:p:119-129

DOI: 10.1016/j.chaos.2005.09.037

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:119-129